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A b s t r a c t  

Two-dimensional (Ato, A20) intensity distributions in 
the plane of diffraction are calculated for the case of 
crystal-monochromated X-radiation incident on a 

small specimen. The calculations are based on ray 
tracing and take into account the mosaic spread of 
the monochromator, depth of penetration into the 
monochromator, source emissivity distribution, 
wavelength distribution, broadening due to the 
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76 TWO-DIMENSIONAL INTENSITY DISTRIBUTIONS 

detector aperture, and various aspects of the experi- 
mental arrangement involved. The general form of 
the Ato, A20 distributions for the case of a mono- 
chromator and small specimen crystal is considered. 
Some calculations are compared with experimental 
results and reveal excellent agreement. 

1. Introduction 

The development of the two-dimensional Ato, A20 
measurement technique (Mathieson, 1982) has 
pointed to a number of advantages in comparison 
with the conventional one-dimensional profile tech- 
nique. The Ato, A20 technique results in a form of 
partial deconvolution for the various components 
present (specimen mosaic spread/-ts, monochromator 
mosaic spread /~M, source emissivity o-, wavelength 
distribution A, specimen-crystal size c, and detector 
aperture ~;). In this way the technique is capable of 
revealing subtleties present in the individual com- 
ponents, which might normally be overlooked (e.g. 
Mathieson & Stevenson, 1984, 1985, 1986a; 
Stevenson, Mathieson & White, 1986; Wilkins, Chad- 
derton & Smith, 1983). 

The Ato, A20 measurement technique has also indi- 
cated ways in which the conventional integrated X- 
ray intensity measurement procedure can be 
improved (e.g. Mathieson, 1983, 1984a, b). These 
improvements are essentially ways of ensuring that 
reflections are truncated in a more consistent manner 
over the full range of specimen-crystal Brags angle 
Os, the result being greater structure-factor accuracy 
(e.g. Mathieson, 1984c). 

Mathieson (1985a, b,c) has considered, theoreti- 
cally, the case where a crystal monochromator M is 
included in the experimental arrangement, from the 
Ato, A20 point of view. Mathieson (1985a) has 
investigated the effects that the mosaic spread of the 
monochromator, the depth of penetration into the 
monochromator and the wavelength band have in 
this context. The focus of attention is the interaction 
of the wavelength dispersion of the monochromator 
and that of the small specimen, S. Mathieson (1988b) 
has recently reconsidered the inclusion of a mono- 
chromator in the experimental set-up, giving rise to 
some small changes in comparison with Mathieson 
(1985a). 

The aim of the present study is to calculate the 
intensity distribution in Ato, A20 space [we refer, 
throughout this paper, to the to-scan mode - the 
results for other scan modes can easily be obtained 
by using affine transformations (see, for example, 
Mathieson & Stevenson, 1985)] for the experimental 
arrangement of an X-ray source, a flat mono- 
chromator M, a small specimen S, and a detector 
with a narrow aperture in front of it (or a linear 
position-sensitive detector). Rather than convoluting 

the functions associated with the various components 
together in Ato, A20 space [a procedure that has been 
used successfully in the non-monochromator case - 
see Stevenson (1989)], a ray-tracing analysis has been 
used. Such calculations avoid making certain assump- 
tions which may not be justifiable here (see also 
Mathieson, 1988b). The success of the calculations 
can be judged by the agreement with certain experi- 
mental Ato, A20 distributions. The calculations also 
suggest other experimental tests which might be car- 
ried out. 

This work is relevant not only to laboratory X-ray 
sources, but also to diffraction with synchrotron sour- 
ces (see also Mathieson, 1988a), neutrons and "),-rays, 
since the form of the individual functions involved 
(for example, /.tM, o-, A and 8) are readily changed. 
Mathieson (1988b) is, in particular, concerned with 
the neutron case. 

2. Theory 

We consider the experimental arrangement to be as 
depicted schematically in Fig. 1. The situation shown, 
which defines the origin of Ato, A20 space, has X- 
radiation of wavelength Ao emanating from the 
"centre' (x =0) of the source, diffracting from the 
surface of the monochromator (and involving a 
mosaic orientation A--0 °) at its centre (y = 0) with 
Brags angle 0M, then diffracting again, from a point 
specimen with Brags angle 0s, and entering the detec- 
tor via a narrow aperture (slit). The second diffraction 
process can occur, relative to the first, in one of two 
senses. The ( + , - )  setting involves the mono- 
chromator and specimen rotation axes being 'in 
opposite senses' and the ( + ,  + ) setting involves them 
being 'in the same sense', the cases of 0s = 0M being 
the classical (n, - n) and (n, n) settings of the two- 
crystal spectrometer respectively (see Compton & 
Allison, 1935; Mathieson, 1968). We denote the path 
lengths in Fig. 1, source to monochromator, mono- 
chromator to specimen and specimen to detector slit, 
by d~, d2 and d3 respectively. 

i (*,*) setting 

Detector ~ 
& slit 

t (point) 
s Specimen S 

i J (+,-) setting 

"(~C7~- " Detector 
Source ~ /1~0o_20s & slit 

ko ;% 

~ s a i c  orientation 
Monochromator M _ _  Y ~ A= 0 ° 

Fig. 1. Schematic diagram of the experimental arrangement. 
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Source 

We assume that each point on the source can emit 
all wavelengths (wavelength distribution A) in any 
relevant direction with source emissivity distribution 
or. The width of the projected focal spot in the diffrac- 
tion plane is denoted Wl. 

Monochromator 

The monochromator  is assumed to be planar and 
often (though not necessarily*) effectively infinite in 
extent along y. The thickness of the monochromator,  
perpendicular to the face, is denoted w2. The mono- 
chromator mosaic spread P~M is assumed to be 
homogeneous throughout. The Bragg planes (for/1 = 
0 °) are assumed to be parallel to the monochromator 
face. 

Specimen 

In the present study we treat the case of a point 
specimen which is perfect. The use of small but finite 
crystals (and those which are only 'nearly perfect') 
does not invalidate the following treatment. The case 
of large and /o r  imperfect specimen crystals would 
require some modifications, however. These assump- 
tions mean that /~s and c can be treated as delta 
functions in this analysis. 

Detector/slit 

The slit should be narrow in the diffraction plane 
(subtending an angle of the order of a few minutes 
at the specimen crystal), and is placed directly in 
front of the detector. The functional form of the 
detector-aperture distribution 6 is rectangular and of 
an angular width equal to that subtended by the slit 
(width w3) at S, i.e. 180°w3/(d3,n.). 

The interplanar spacings of the monochromator 
and specimen are dM and ds respectively, and so 
Ao = 2ds sin Os = 2dM sin OM. 

Initially, we will assume that there is no depth of 
penetration into the monochromator.  By considering 
a singly diffracted beam from a general position y on 
M and going through S, it is a simple matter to show 
that the (acute) angle between the beam and the 
monochromator face (in the diffraction plane) is given 
by 

= tan_l ( d2 sin 0~ /3 d2 ~os -d~4 - y ] "  (1) 

At this stage we cannot determine the wavelength A 
involved in this singly diffracted beam since the 
mosaic orientation A is unknown. Both A and/1 will 
be fixed when the position x on the source is specified. 

* If M is finite along y we assume that no radiation can pass 
through the sides (thickness w2). 

By considering a beam emanating from a general 
position x on the source and going to position y on 
M, it can be shown that the (acute) angle between 
the beam and the monochromator face is given by 

c~ = t a n  -~ [p sin y / ( y - p  cos y)], (2a) 

where 

P = (x 2 + d2) '/z (2b) 
and 

Y = 180 ° -  OM --tan -~ (x/d~). (2c) 

The mosaic orientation involved in the (first) 
diffraction process is then given as 

a = ( a - f l ) / 2 .  (3) 

The wavelength involved is given by 

A=ZdM s in[ (a+f l ) /2] .  (4) 

For the case depicted in Fig. 1 a =/3 = 0M, so that 
(3) and (4) give A = 0 ° and A = A0 respectively. 

Using (1)-(4), we find that particular values of x 
and y lead to unique values of a and A. For the 
( + ,  - ) setting we consider clockwise rotations of the 
specimen and the detector to be positive a(o and A20 
respectively. For the ( + ,  + ) setting we consider anti- 
clockwise rotations to be positive Aw and /120. The 
Bragg condition for the specimen crystal implies 

A = 2ds sin (Os •/3 :t: OM +/1(0), (5) 

where the lower sign applies to the ( + ,  - )  setting 
and the upper sign to the ( + ,  + )  setting. Using (4) 
and (5) we get 

Aw = sin -~ {dM s in[(a+/3) /2] /ds}  

- Os+/3q: OM, (6) 

and it can be shown that 

A20 = 2/1(o q:/3 + 0M. (7) 

Equations (6) and (7) can be shown to be consistent 
with equations (1)-(3a)  of Mathieson (1985a). From 
(7) 

/3 = +2Ato :~/120+ 0M, (8) 

and using (1) we get 

y = dE COS 0M -- d2 sin 0M/tan (+2aw :~ a20  + 0M). 

(9) 
Equations (6) and (7) imply 

a = 2 s in-l[ds sin (a20 -/1oJ + Os)/dM] 

q:2Ato + A 20 - OM. (10) 

Using (2a) and the geometrical conditions 

p sin y = d~ sin 0M + X COS 0M (11 a) 

and 

p cos y = x sin OM -- dl cos OM, ( l l b )  
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we obtain the result 

y t a n  a+d~(cos  0M tan a - s i n  0M) 
x -  , (12) 

cos 0M + sin 0M tan a 

where a is given by (10). 
It is now possible to calculate, for a given point in 

Aw,/120 space, the corresponding position on the 
monochromator face (in the diffraction plane) y 
[from (9)] and the corresponding position on the 
source x [from (10) and (12)]. The values of a and 
/3 can be used to calculate the values o f / 1  and a 
[from (3) and (4) respectively]. The 'intensity' for the 
given Aw,/120 point is then calculated as the product 
of the values of the functions associated with P.M (/1), 
o-(x) and a(a). In the event that the value of x (y )  
does not correspond to a position on the source 
(monochromator),  the 'intensity' for the given 
aw, A20 point is zero. 

In order to take account of the broadening in the 
/120 direction, caused by the detector aperture (slit 
of width w3), the calculated Aw,/120 intensity distri- 
bution can be numerically convoluted with 6, of a 
form described in the previous section. 

sponds, in the present case, to the rather severe restric- 
tion that a can only have the value 0M. Such a 
situation is approximated, for example, at syn- 
chrotron radiation sources, where the beam diver- 
gence is, say, 20" (see also Mathieson, 1988a). From 
(10) it can be shown that a = 0M implies aw~-- 
/120(t + 2) / (2t  + 2) [A20 ---=- 0 for t = 1 "0 in the ( + ,  - ) 
setting]. Thus the /1w,/120 distribution for such a 
case is a line of gradient ( t + 2 ) / ( 2 t + 2 )  through the 
origin. In particular, for t =  1.0 (2.0) in the ( + ,  - )  
setting the line is parallel to the /1w (/120) axis. 
Various other simplifications occur when a = 0M, e.g. 
(12) will reduce to x = y s i n  0M and (14) becomes 
/1 ~ - - / 1 2 0 / ( 2 t  +2) [/1-~ k w  for t = 1.0 in the ( + ,  - )  
setting]. 

From (9), (10) and (12), and using the above- 
mentioned small-angle approximations, we find 

x -=- {d,[2(A20 - Aw)/t  q: (2/1to - /120) ]  

x t an  0M + d2(2Aw - / 1 2 0 )  tan 0M} 

x {tan 0M :t: (2Aw - A20)} -1 (16) 

and therefore 

3. Aspects of the Ato, A20  distribution 

From (5) and (8), 

a =2ds  sin ( O s - a w + a 2 0 )  (13) 

which implies that the wavelength is constant along 
lines of gradient 1 in /1to,/120 space (a =)t o along 
/1to =/120).  

From (9) we see that the associated position along 
the face of the monochromator (in the diffraction 
plane) is constant along lines of gradient 1/2 in 
ato,/120 space (y = 0 along ~1to =/120/2) .  

Using (3), (8) and (10), we obtain 

/1 = ( ds cos Os/ dM COS OM )( /120 -- /1W ) 

q= 2/1w + /120, (14) 

from which we get 

/120 [ t + l \ t/1 Aw 
2 t + l '  

(15) 

where t = tan 0s/ tan 0M.* The approximations made 
in deriving (14) were that sin e -- e and cos e --=- 1 for 
small e. The mosaic orientation involved is constant 
along lines of gradient ( t + l ) / ( 2 t + l )  in /1w, A20 
space [A = 0  along Aw = A 2 0 ( t +  1) / (2 t+  1)] (t # 0). 

Mathieson (1988b) has briefly discussed the shape 
of reflections in Aw,/120 space for the case of a 
near-parallel incident beam (small divergence in the 
diffraction plane). A parallel incident beam corre- 

* For the special case of t=0.5 in the (+, - )  setting (15) is 
replaced by A20 = A, i.e. the mosaic orientation involved is constant 
along lines parallel to the Am (vertical) axis. 

Aw = {+x + tan  OM[2d,/t  + (d, - d2)]}k20 

x { +2x + tan 0M [2d , / t  + 2(d, - d2)]}-' 

- (x tan 0M) 

x { + 2 x + t a n 0 M [ 2 d , / t + 2 ( d , - d 2 ) ] }  -~. (17) 

For the trivial case of t = 0  ( 0 s = 0 )  (17) reduces to 
Ao~ = A20 (for any value of x), as does (13) (for any 
value of,X) and (15) (for any value o l d ) .  In instances 
where 0s is considerably larger than 0M (as might be 
the case, for example, with a pyrolytic graphite 002 
reflection for monochromation),  so that 2 d f f t ¢  
[d~- d2[ (for suitable d~ and d2), (17) implies that the 
source position is constant along lines of approximate 
gradient 1/2 in kto, k20  space. In cases where d~ = d2 
(and x is small compared with d~) (17) implies that 
the source position is constant along lines of approxi- 
mate gradient 1 in kw, k20  space. In general, the line 
in kw, k20 space corresponding to x = 0 has gradient 
[ 2 d , / t + ( d ~ - d 2 ) ] / [ 2 d , / t + 2 ( d , - d 2 ) ]  and goes 
through the origin (t # 0). 

In order to demonstrate some of the aspects of the 
Ao~, a20  distribution mentioned above, Fig. 2 dis- 
plays the calculated results for >M, ~ and h of rec- 
tangular shape [except that in (a), p.M is triangular, 
in (b), o- is triangular, and in (c), a is triangular] 
with base widths 0.4 °, 0.8 mm and 0.02 7k respec- 
tively. In addition, these functional forms are sym- 
metric about A =0,  x = 0  and a = ho, respectively. 
For these calculations, d~ = 10, d2 = 1 cm, 0M =30  °, 
ho = 1 ]k, the detector slit is assumed to be of negli- 
gible width (w3/d3 = 0), depth of penetration into the 
monochromator is ignored and the monochromator 
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is assumed to be infinite in extent along y. Parts (i) 
to (vi) of  Fig. 2 correspond to t = 0.25, 0.5, 0.75, 1.0, 
1.25 and 1.5, for the ( + ,  - )  setting. 

Fig. 2 displays the dramat ic  change in shape and 
size of  the two-dimensional  intensity dis t r ibut ion as 
a function of  t. This indicates that for convent ional  
one-dimensional  intensity-profile de terminat ion both 
the scan range and detector-aperture size should  be 
varied as a function of  t (Os, for fixed 0M) for con- 
sistent t runcat ion of  reflections (see Mathieson,  
1985a, b,c). The intensity distr ibutions in Fig. 2 are 
bounded  by a pair  of  lines along the direct ion of  
constant A [see (15)] and  a pair  of  lines along the 
direction of  constant  x ['see (17); in the cases con- 
sidered, the value of  x has a negligible effect on the 
value of  the coefficient of  A20]. Thus for the case of  
t=0.5 (1.0) two of  the sides of  the resulting 

0 

(iii) 

/ 

(ii) 

/ 

/ 

/ Q 

(iv) 

(i) 

t A~0 

I 

/ 

/ 

/ 
- - ¢'-A20 

(v) 

~ _ _ _  i ° 

para l le logram are parallel  to A~o (A20) [see (15)]. As 
t ~ 0  the distr ibutions in Fig. 2 tend to a line of  
gradient  1 in Ato, A20 space (as already discussed).  

In Figs. 2(a)  (i) to (vi) we see the way the direction 
of  constant  A changes,  as predicted by (15). The cases 
of  t =0 .5  and  1.0 are part icularly noteworthy (see 
above),  with the latter corresponding to the classical 
( n , - n )  setting of  the double-crystal  spectrometer.  
Figs. 2(b) (i) to (vi) show the change in the direction 
for constant  x, in accord with (17). Finally,  Figs. 2(c) 
(i) to (vi) show the direction of  constant A to be at 
45 ° to the At,, and A20 axes, as predicted by (13), 
regardless of  t. As t becomes large, it can be seen 
from (15) and (17) that the gradients for the directions 
of  constant  A and x will both approach 1/2. 

The calculat ions presented in Fig. 2 are restricted 
to the ( + , - )  setting. Similar  calculations for the 
( + ,  + ) setting are quite straightforward, but do not 
offer any especial ly new insights. In fact, these two- 
d imens iona l  dis tr ibut ions do not show the remarkable  
variation seen in Fig. 2, largely because ( t -  l ) / ( 2 t -  
1) changes from 1 to oo and then from -oo to 0 to 
0.5, as t changes from 0 to oo, whereas ( t +  1 ) / ( 2 t +  1) 
only changes from 1 to 0.5. 

The boundary  of  the two-dimensional  intensity dis- 
tr ibutions is dependen t  on the interaction of  several 
factors in the exper imenta l  ar rangement  including 
incident-beam geometry,  source size, monochromator  
size, monochromato r  mosaic  spread, wavelength 
band,  and so on. In order  to demonstrate  this point 
we will examine  the distr ibut ion for t = 0.75 in Fig. 
2, this time, for convenience,  with # ~ ,  ty and A all 
represented by rectangular  functional  forms. Fig. 3 
shows the calculated two-dimensional  intensity distri- 
butions for t = 0.75, with the same parameter  values 
as for Fig. 2, but with the monochromator  size (along 
y) restricted to (a)  0.4, (b) 0.3, (c) 0.2, (d)  0.1 and 
(e) 0.04 mm (symmetr ica l ly  about y = 0). Fig. 4 shows 
the calculated two-dimensional  intensity distr ibutions 
for t = 0.75, with the same parameter  values as for 
Fig. 2, but with a monochromator  size of  0.4 mm and 
a source size (wl) o f ( a )  2.4, (b) 1.6, (c) 1.2, (d)  0.8, 
(e) 0.4 and  (f)  0.2 mm. For the calculat ions in Fig. 
2 the monochromato r  was assumed to be infinite in 

(vi) 

(a) (b) (c) 

Fig. 2. Calculated Aa,,A20 intensity distributions for (a) 
triangular/aM, rectangular cr and A; (b) triangular o', rectangular 
/aM and ,~; (c) triangular A, rectangular/aM and o-. The base 
widths of/aM, cr and A are 0-4 °, 0-8 mm and 0-02 A respectively. 
The respective functional forms are symmetric about A = 0, x = 0 
and ,~ = Ao. Other relevant parameter values are given in the 
text. The values of Os, for the (+, - )  setting, are such that t 
takes the values (i) 0.25, (ii) 0-5, (iii) 0-75, (iv) 1.0, (v) 1.25 and 
(vi) 1.5. 

1 ° 
L I 

EI- EI 
Ao) 

+ 

f 

I 
(a) (b) (c) (d) (e) 

-~A20 

Fig. 3. Calculated A~o, A20 intensity distributions for t = 0.75, with 
the same parameter values as for Fig. 2, but/aM, o- and ~ are 
all rectangular functional forms, and the monochromator size 
(along y) has been restricted to (a) 0.4, (b) 0.3, (c) 0-2, (d) 0.1 
and (e) 0-04 mm (symmetrically about .v =0). 
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extent along y. In fact, only values of y in the interval 
(-0.187,  0.183) mm were necessary, i.e. a mono- 
chromator size of, say, 0.4 mm [as in Fig. 3(a)]  or 
larger could have been considered to be infinite. The 
monochromator size for Fig. 4 is also effectively 
infinite. Figs. 3(a) and 4(d)  are both the same as 
Figs. 2(a)(iii),  2(b)(iii) and 2(c)(iii) would be if the 
triangular functional form in each were replaced by 
the rectangle. It is therefore pertinent to note that a 
third pair of lines, at 45 ° to the Aw and A20 axes, 
also forms a small part of the boundary of this two- 
dimensional distribution. This effect is not evident in 
Fig. 2 (for any value of t). This third pair of lines is 
along the direction of constant A [see (13)]. 

In Fig. 3 we see the effect of making the mono- 
chromator smaller (along y),  in that a pair of lines 
at tan -~ (1/2) to the A20 (horizontal) axis increas- 
ingly truncates the Aw, A20 distributions [no such 
truncation occurs in Fig. 3(a)].  In Fig. 4 we see the 
effect of making the source smaller (along x), in that 
a pair of lines at approximately 64 ° to the A20 axis 
increasingly truncates the Aw, A20 distributions [no 
such truncation occurs in Fig. 4(a)].  The significance 

Aoo 

A 

(a)  

of the angle 64 ° in this case is that it represents 
t a n - t { [ 2 d ~ / t - ( d , - d 2 ) ] / [ 2 d l / t - 2 ( d , - d 2 ) ] } ,  as dis- 
cussed in connection with (17). 

In certain circumstances the two-dimensional 
intensity distribution under consideration might be 
bounded by four pairs of lines, these representing 
limitations on/zM, tr, A and the monochromator size. 
For example, Fig. 5 shows the calculated Ato, A20 
distribution for t=0-75 ,  with the same parameter 
values as for Fig. 2, but with a monochromator size 
of 0.26 mm and a source size of 1.5 ram. 

It should be pointed out that there is a definite 
'sense' to the way in which/zM, tr and h occur in the 
Aw, A20 distributions. So far we have considered only 
symmetric functional forms, but if a particular com- 
ponent is asymmetric, the resulting two-dimensional 
intensity distributions show this in a predictable man- 
ner. This point will be borne out in § 5, where /zM 
shows some effects akin to fragmentation and ;t is 
double peaked (representing a Ka doublet). 

The functional forms used in this section, especially 
those for /z~ and A, may not be considered very 
realistic; however, the use of such functions is most 
helpful in ascertaining the basic features of the two- 
dimensional intensity distributions. Having gained 
initial insight with such an analysis, one is then better 
equipped to handle the more realistic situations of, 
say, Gaussians and Lorentzians f o r / z ~  and A, and 
trapezoids for tr. 

(b) 

(c) 

4. Depth of penetration into the monochromator 

The effect of depth of penetration into the mono- 
chromator cannot be ignored in the case of, for 
example, pyrolytic graphite (see Mathieson, 1985a). 
In order to take account of this effect in our calcula- 
tion of two-dimensional intensity distributions we 
introduce another variable, z, which represents the 

1 ~ A 2 0  

(d) 

(e) 

( f )  

/ 

/ /  
20 

1 ° j 

Fig. 4. Calculated Aw, A20 intensity distr ibutions for t = 0.75, with 
a monochromato r  size o f  0-4 mm and a source size (w 1) of  (a)  
2.4, (b) 1.6, (c) 1.2, (d)  0.8, (e)  0.4 and ( f )  0.2 mm. 

0 

I I 

Fig. 5. Calcula ted  Aw, A20 intensity distr ibution for t = 0.75, with 
a m o n o c h r o m a t o r  size of  0-26 mm and a source size of  1.5 ram. 
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distance into the monochromator from the face, along 
the surface normal. The value of z at the mono- 
chromator surface is zero and the 'back' face w2. 

If we proceed in a similar manner to that outlined 
in § 2, (1), (2b) and (2c) still hold but (2a) becomes 

or = tan-  ~ (_y sin/3 s i n ,  + p sin y sin (/3 + ~0) '] 
\ y sin/3 cos 0 - P cos 7 ~ ~ + ? ) / '  

(18a) 

where 

O = t a n  -i [ z / ( y - z  cot/3)]. (18b) 

The value of ~0 should be in the first or second 
quadrant. 

Equations ( 3 ) - ( l i b )  still hold but (12) becomes 

x = [y sin/3 (cos ~ tan or - s i n  ~) 

+ d l  sin (13 + @)(cos 0M tan a - sin0M)] 

x[s in  (/3+qJ)(COS 0M+sin 0M tan a) ]  -1. (19) 

If z = 0 ,  (18b) implies ~ = 0  (or 180°), (18a) reduces 
to (2a) and (19) reduces to (12). I fy  = 0, (18b) implies 
~b = 180°-/3 ( = 180 ° -  0M), (18a) is replaced by 

z sin qJ + p sin y sin/3 '~ 
or = tan-I _ 

7 \ z cos 0 - P  cos y sin/3 

and (19) is replaced by 

(20) 

z sin(0M + or) + d l  sin 0M sin(0M -- or) 
X-- (21) 

--sin0M COS(0~ -- or) 

If z = 0  and y =0,  (18b) is ignored, and (18a) and 
(19) are replaced by (2a) and (12) respectively. 

For a given Aw, A20 point c~, /3 and y can be 
calculated as before and then lA and h, but there is 
no longer a unique value of x. The value of x depends 
on z and, for a given Aw, A20 point, has the form 
x = - A z  + B, where A and B are constants and A > 0. 
Thus the greater the depth of penetration, the further 
the corresponding source position is in the negative-x 
direction. The resulting 'intensity' for a given Aw, A 20 
point is the product of P.M (A), h (h), y(y)  and 7/. The 
function y(y)  is rectangular, being positive when y 
corresponds to a position on the monochromator face 
(for the outgoing beam) and zero otherwise. The 
function r/ can be represented as 

W 2 

= Y~ y(y')cr(x) e x p [ - z x ( o r - O M ) / s i n  or] 
z = 0  

(22) x exp[-zx(/3 - OM)lSin/3], 

where the first (second) exponential represents the 
attenuation factor for the incoming (outgoing) beam 
inside the monochromator.  X is an effective absorp- 
tion coefficient, a function of the deviation from the 
Bragg angle (e.g. Calvert, Killean & Mathieson, 1976). 
It must be stressed that the value of x, on which o-(x) 

depends, is itself dependent on z. 7(Y') appears in 
(22) to ensure that incoming beams pass through the 
monochromator face, where y'  = y - z(cot a + cot/3). 
The summation in (22) is carried out over N values, 
so that the increment in z is given by az = w 2 / ( N  - 1), 
and Az >> dM. 

Fig. 6 is a schematic diagram of the depth-of- 
penetration situation for three values of a and/3. We 
see that for the beams represented by dot-dash lines 
(a  = a '  and/3  =/3') the source will not supply radi- 
ation for the larger depths of penetration, and so the 
intensity at the corresponding Aw, A20 point will be 
somewhat diminished. For the solid lines (or = or" and 
/3 =/3") the source does not present a limitation for 
any depth of penetration. In the case of the dashed 
lines (a  = or'" and/3 =/3'") the source will not supply 
radiation for the smaller depths of penetration, and 
the corresponding intensity in zlw, A20 space will be 
severely reduced, because the beams from near the 
monochromator surface are those which suffer least 
attenuation (owing to smaller crystal path lengths). 

The minimum source size necessary to satisfy all 
depths of penetration for a particular zlw, A20 point 
is given by 

W E sin(or +/3) 
X r n i n  ~ . 

sin/3 COS(0M - or) 

"" 2wz cos 0M, (23) 

assuming that this is correctly disposed in the diffrac- 
tion plane, i.e. in the general case, the source of size 
Xmi, would not be centred on x = 0. In carrying out 
simulations of experimental Aw, A20 intensity distri- 
butions where the depth-of-penetration effect is 
important and wl is relatively small, the position of 
the source along the line of x will need to be well 
defined, and may be quite 'lop-sided' with respect to 
x -- 0 (as defined in Fig. 1). A useful test in this regard 
might be, for example, the agreement of observed 
and calculated Korl-to-Korz intensity ratios in 
Aw, d 2 0 space. 

\ 

/ ~  x \ \  \ S p e c i m e n  S~.~' 

176 ' ,', ,S - - .  \ \ \ \  / /  w , /  \ \  \\ \ / ~ /  
Source / A" X \~ \ \ \ \ \  \ / " /  / /X,.\\ .,', ,,,,',. .-?// 

,,"X',,\\ \\ % 'd,"- -"// 
.. x . . " . . ' N \ "  \ \ "  ,, \ \ . , " C \  -" J i" • x x',..-xx'X', \ \ ~ .  h,\ \ \ \ / / # 
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Monochromator M 

Fig. 6. Schematic diagram of the depth-of-penetration situation 
for three values of a and/3. 
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Fig. 7 shows the calculated aw,/120 distributions 
for t = 1.0, with the same parameter values as for Fig. 
2 (/ZM, tr and A all being of rectangular shape here), 
but with allowance for depth-of-penetration effects 
and w2 equal to (a) 0-0, (b) 0.1, (c) 0.2, (d) 0.3, 
(e) 0.4 and (f)  3 .0mm. The value of az  used in 
these calculations was 1/xm, and x(O--OM)= 
2 exp [ -16  In 2 ( 0 -  0M)2] + 8 cm - '  (with O--OM 
expressed in degrees), i.e. a Gaussian of height 2 cm -1 
and FWHM 0-5 ° sitting on a base level of 8 cm -1. 

As the thickness of the monochromator (w2) 
increases in Fig. 7 we can see a progressive increase 
in the intensity at points of higher/120, up to a limit 
imposed by A (a line at 45 ° to the ato and/120 axes). 
This effect can be understood from Fig. 6 because 
some Ato,/120 points which receive no (or little) 
intensity for a particular value of w2, owing to the 
source-size limitation on the positive-x side, can get 
some (or more) intensity for a larger value of w2 
owing to the possibility of greater depths of penetra- 
tion. However, if a given aw,/120 point has no (or 
little) intensity due to the source-size limitation on 
the negative-x side, increasing w2 will not provide 
any (or more) intensity. Hence the fact that the two- 

(a) 

(b) 

(c) 

(a) 

A 6 o  

~ A 2 0  

(e) 

( f )  

i I° i 

Fig. 7. Calculated A~o, A20 intensity distributions for t= 1.0, 
including the effects of depth of penetration. The values 
of w 2 are (a) 0.0, (b) 0-1, (c) 0.2, (d) 0.3, (e) 0.4 and 
(f)  3.0ram. The value of Az is 10.m, and x (O-OM)= 
2 exp [ -16 In 2 ( 0 -  0M)2]+8 cm -l ( 0 -  0M in degrees). 

dimensional distributions lose some of their 'sym- 
metry' for non-zero w2. 

In order to compare the positions of the two- 
dimensional intensity distributions, of Fig. 7 in 
Aw, A20 space it,is useful to remember that the coor- 
dinates of the point (of non-zero intensity) where the 
Aw value is minimum and the associated /t20 value 
is maximum (i.e. the 'bottom right corner') remain 
constant throughout Fig. 7. In Fig. 7(a) the origin 
(/1w =/120 = 0) is in the 'centre' ofthe intensity distri- 
bution, as it is for Figs. 2, 3, 4 and 5. This is not the 
case for Figs. 7(b) to (f) ,  the 'centre' being progress- 
ively more to the right of the origin as w2 increases. 
In general terms, the intensity at the points with lower 
/120 values is not decreasing as w2 increases in Fig. 
7, but the intensity at points of higher/120 is increas- 
ing relative to them. 

It is apparent from the preceding discussion that 
we are treating the two-dimensional intensity distribu- 
tion, l(/1w,/120), as the sum of two-dimensional 
intensity distributions, lz(/1~o,/120), from different 
depths of penetration into M: 

w 2 

l (Aw,/120) = Y. lz(Ato,/120). (24) 
z = 0  

This approach is clearly only an approximation to 
the true situation, but if az is chosen sensibly and 
x(O-OM) is realistic (e.g. Calvert, Killean & 
Mathieson, 1976; Mathieson, 1985a) the results 
should represent a considerable improvement, when 
depth of penetration is important, in comparison with 
ignoring the effect. 

Fig. 8 displays the calculated/1to,/120 distributions 
corresponding to those in Fig. 7 but for specific 
regions of z, namely, (a) [0.0, 0.1), (b) [0.1, 0.2), (c) 
[0.2, 0.3), (d) [0.3, 0.4), (e) [0-4, 0.5), (f)  [0.5, 0.6), 
(g) [0.6, 0.7) and (h) [0.7, 0-8) mm. The value of/1z 
used was as for Fig. 7, i.e. 1/zm. The distributions in 
Fig. 8 have been displayed in such a way that the 
maximum intensity is given the 'whitest grey level', 
as are all the distributions presented in this paper. If 
we consider a scale on which the maximum intensity 
in Fig. 7(f)  is given the value 10.0, then the maximum 
intensities for Figs. 8(a) to (h) are 3.7, 2.6, 1.9, 1.3, 
0.9, 0-7, 0-5 and 0.2 respectively. We note that the 
sum of these values, 11.8, is greater than 10.0 because 
the maximum intensities occur at different positions 
in /1w,/120 space (see preceding discussion). If the 
appropriate distributions in Fig. 8 are added together, 
with the correct weighting applied, those in Fig. 7 
will be formed, e.g. Fig. 7(d) can be formed from 
Fig. 8(a) (×3.7/10.0) ,  Fig. 8(b) (×2-6/10.0) and 
Fig. 8(c) ( × 1.9/10.0), on a relative scale. [Fig. 7(f) 
can be formed from just  the distributions in Fig. 8, 
since there is no intensity arising from any depths of 
penetration larger than 0.78 mm in this case.] 

The structure within the two-dimensional distribu- 
tions of Figs. 7 and 8 is affected by the choice of 
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x(O - OM). Fig. 9 shows calculated ,4to, ,420 distribu- 
tions for t = 1.5, with the same parameter values as 
for Fig. 7 (with w2=0.5 mm), but with X ( O - O ~ )  
multiplied by (a) 0.25, (b) 1.0, (c) 2-0, (d) 5.0, (e) 
10.0 and (f)  1000-0. We see that as x ( O - - O M ) ~ ,  
therefore eliminating the depth-of-penetration effect, 
the ,4to, ,420 distribution tends to that expected from 
the earlier analyses. The FWHM of X ( O - O M )  will 
also affect the structure within the ,4to, ,420 distribu- 
tions. 

5. Comparison with experiment 

A high-resolution double-axis X-ray diffractometer 
has been used to collect several Ato, ,420 intensity 
distributions. The first (monochromator) axis can be 
varied (using a microcomputer-controlled stepping 
motor) in steps of approximately 7.5", the second 
(specimen) axis can be similarly varied, in steps of 
approximately 0.5". A scintillation detector can be 
rotated (independently) about the specimen axis in 
steps of approximately 0.5". Both axes support motor- 
ized goniometer heads which are remotely controlled, 

A ~  

and provide fine translational and angular adjustment 
of the two crystals. 

The experimental arrangement, essentially that 
depicted in Fig. 1, has a fine-focus Cu X-ray tube 
disposed so that the effective source size is 0.4 mm 
(vertically) x 0.8 mm (w~). This tube was run at gen- 
erator settings of 45 kV and 26 mA, and the incident- 
beam collimation was provided by a 1.5 mm diameter 
hole just beyond the tube housing. The source-to- 
monochromator distance, dr, is 10 cm. The mono- 
chromator used was pyrolytic graphite (ZYA: nom- 
inal mosaic spread of 0.4+0-1 °) of approximate 
dimensions 12.5 mm (vertically) x 24.5 mrn (horizon- 
tally, i.e. in the diffraction plane) x 0.9 mm (thickness 
w2). The monochromator was set for the peak of the 
006 Cu Kti reflection, so that dM = 1.12 A a n d  OM = 
43.5 °. The monochromator-to-specimen distance, d2, 
is 6.5 cm. The specimens used were Si wafers of (100), 
(110) and (111) orientation, and a narrow (vertical) 
slit was placed just before the specimen. The specimen 
reflections considered (all symmetric) were 111 (Os = 
14.2°; t=0 .27) ,  220 (0s=23.7°;  t =0.46), 400 (Os = 
34-6°; t=0 .73)  and 333 (0s=47.5°; t = l . 1 5 ) .  The 
detector-slit width, w3, was 0.1 mm, and placed 19 cm 
(d3) from the specimen, i.e. the slit subtends an angle 
of approximately 0.03 ° at S. 
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Fig. 8. Calculated Ato, A20 intensity distributions corresponding 
to those in Fig. 7, but for the following regions of z: ( a ) [0.0, 0.1 ), 
(b) [0.1,0.2), (c) [0.2,0.3), (d) [0.3,0.4), (e) [0.4,0-5), (f) 
[0-5, 0.6), (g) [0-6, 0.7) and (h) [0-7, 0-8)mm. 

(f) 

I 
I 1° I 

Fig. 9. Calculated Ato, A20  intensity distributions for t = 1-5, w2 = 
0.5 ram, and with x(O - OM) from Fig. 7 multiplied by (a) 0-25, 
(b) 1.0, (c) 2-0, (d) 5-0, (e) 10.0 and (f) 1000.0. 
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The choice of parameter values for the experi- 
mental arrangement described above (in particular, 
w~, d~, d2, 0M, )tO and an appropriate/zM width) was 
influenced by a desire to ensure that both the Ka~ 
and Ka2 peaks could be seen in the zlto, A20 intensity 
distributions. If we ignore, for a moment, the depth- 
of-penetration effect, then, for A -- 0, the source points 
for Cu Ka~ and Cu Ka2 are separated by approxi- 
mately w~/2, for the parameter values chosen here 
[see also Fig. 3 of Mathieson (1985a)]. It was also 
deemed necessary that the accessible values of t span 
a reasonable range [especially in the ( + ,  - ) setting]. 
[For this experiment, the lower limit on t was set by 
the minimum Os value available (that for Si 111) and 
the upper limit was set by mechanical constraints on 
the diffractometer.] 

In calculating the Ato, za20 intensity distributions 
for the experimental arrangement described above 
(to compare with the measurements), the only par- 
ameters which are not already completely determined 
are )to and those used to describe the functional form 
of /xM. The functional form of tr is taken to be 
trapezoidal (e.g. Alexander & Smith, 1962; Stevenson, 
Mathieson & White, 1986), centred on x = 0, with the 
ratio of the widths at the base (w~) and top being 
5/3, a suitable choice for standard X-ray tubes. The 
functional form of )t is taken to be the sum of two 
Lorentzians (e.g. Hoyt, 1932), the first (second), for 
Cu Kal (Cu Ka2) , centred on 1-54051 (1.54434)/~ 
and having a FWHM of 0.00058 (0.00077)/~ 
(Compton & Allison, 1935). The ratio of the peak 
heights for the two Lorentzians is such that the areas 
under the peaks are in the ratio 2:1 (Cu Ka~ :Cu Kot2). 
The functional form of x(O-OM) is taken to be a 
Gaussian of height 1.8 cm -~ and FWHM 0.5 ° sitting 
on a base level of 9 .2cm -~ (Calvert, Killean & 
Mathieson, 1975, 1976) and Az = 1 Ixm. The calcula- 
tions presented in this section will include a numerical 
convolution with 8 (see § 2). 

The value of )to used in this section is 1.54051/~, 
(Cu Kay) and the functional form of/ . t~ was taken 
to be the sum of two Gaussians of FWHM 0.2 °, the 
first centred on A--0  °, and the second centred on 
A = - 0 . 2 5  ° with 30% of the peak height of the first 
Gaussian. These parameter values are by no means 
'fitted' but have been chosen to improve the agree- 
ment between the observed and calculated Ato, A20 
distributions. The selection of )to affects, in particular, 
the ratio of the Cu Kot~ and Cu Kot2 intensities (due 
primarily to the relatively small source in the present 
case). The functional form of/zM is consistent with 
the presence of some fragmentation (e.g. Mathieson, 
1982). 

Fig. 10 shows the (i) observed and (ii) calculated 
two-dimensional intensity distributions for the 
experimental arrangement described in this section. 
For the ( + ,  - )  setting Fig. 10 displays the (a) 111, 
(b) 220, (c) 400 and (d) 333 reflections, and for the 

( + ,  + )  setting, (e) 400, (f) 220 and (g) 111 reflec- 
tions. The calculated intensity distributions were 
obtained using points on a square grid of size 0-0139 ° 
(50") in zato and A20 (the same increment as was 
used for the measurements). (All other calculations 
in this paper have used a square grid of size 0.005 ° 
in Ato and A20.) The plots in Fig. 10 are presented 
on a logarithmic scale for clarity (all other plots have 
been on a linear scale). 

The agreement between the observed and calcu- 
lated Ato, A20 distributions in Fig. 10 is excellent. 
This agreement might be improved further by sys- 
tematically varying certain parameters (e.g.)to, and 
those associated with/zM ). It would also be instructive 
to reduce the grid size in Ato, za20 space, for both 
observed and calculated distributions, if measure- 
ment and computer time, respectively, permitted. It 
should be emphasized that the only parameter which 
is altered in Figs. 10(a)(ii) to (g)(ii) is Os. 

The size of the pyrolytic graphite monochromator, 
along y, is effectively infinite in the present case. The 
range of y values used for the reflections in Fig. 10 
is (-3.62,  3 .14)mm [(-2 .31,  3.14)mm if depth-of- 
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(d) ~ A 2 0  

(a) 

,e,  

(f) 

(g) 
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Fig. 10. The (i) observed and (ii) calculated //to, A20 intensity 
distributions for the experimental arrangement described in § 5. 
The (+, - )  setting is represented by the (a) 111, (b) 220, (c) 
400 and (d) 333 reflections for different Si specimens, and the 
(+, +) setting by the (e) 400, (f) 220 and (g) 111 reflections. 
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penetrat ion effects are ignored]. The thickness of  this 
monochromator  is such that approximate ly  24% of 
the incident  beam depicted in Fig. 1 will go all the 
way through the monochromator  [for 0M =43"5 °, 
WE = 0"9 mm and X(0) = 11 cm-l ] .  

It is apparent  that a full assessment of the foregoing 
theoretical t reatment of  Ato, A20 intensity distribu- 
tions would benefit from further comparisons with 
experiment.  In particular,  cases where more extensive 
wavelength bands  are present (e.g. neutron or white- 
beam X-ray experiments)  would facilitate such an 
assessment. 

6. Discuss ion 

The main aim of  this paper  has been to provide a 
systematic study of  the form of Ato, A 2 0  intensity 
distr ibutions for the case of  crysta l -monochromated 
X-radiat ion and a small specimen crystal. This is not 
only of  interest in itself, and in respect of  the advances 
that have been made in the resolution obtainable  from 
l inear posit ion-sensit ive detectors, but is also par- 
t icularly relevant for the determinat ion of one- 
d imensional  intensity profiles and integrated 
intensities in a reasonable  and consistent manner .  
Mathieson & Stevenson (1986b) have discussed 
'counter '  and 'fi lm' profiles, and their re lat ionship to 
the Aw, A20  distribution. The Ato, A20 technique is 
very instructive when decisions concerning appropri-  
ate scan ranges and detector-aperture sizes for trun- 
cating reflections in the course of a routine data 
collection have to be made  (Mathieson,  1983, 1984b, 
1985b). 

The discussion presented in this paper  has been in 
terms of  the to-scan mode,  the results for other scan 
modes ( to /0  and w / 2 0  in particular) being derivable 
quite straightforwardly,  as stated in § 1. For example,  
A is constant along lines of gradient oo for the to/0 
scan mode (i.e. along lines parallel  to the Ato axis) 
and along lines of gradient  - 1  for the to~20 scan 
mode, in Ato, A20 space. A is constant along lines of 
gradient  ( t +  1 ) / t  for the to/0 scan mode and - (1  + t) 
for the to/20 scan mode. 

The approach  used here to determine the form of 
the Ato, A20 distr ibutions is quite flexible and lends 

itself to modification.  For example,  one could readily 
include the effects of  addi t ional  collimators and slits, 
or perhaps Soller slits, and so on, in the exper imental  
arrangement.  This might  prove part icularly useful 
when applying the theory to other radiations,  e.g. 
neutrons or y-rays. It is also possible to have an 
inhomogeneous  mosaic spread associated with the 
monochromator ,  if  appropriate.  The extension of  the 
theory to large a n d / o r  imperfect  specimen crystals 
will be treated elsewhere. 

It is a great pleasure to thank Professor A. McL. 
Mathieson for his interest, encouragement  and input  
throughout  the course of  this work, and for reading 
and discussing the manuscript .  
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